Sea Level Changes Along Global Coasts from Satellite Altimetry, GPS and Tide Gauge
نویسندگان
چکیده
The average global sea level was rising through the 20th century as a result of global warming [8, 9, 26]. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) estimated that between 1901 and 2010, the mean sea level rate 1.7±0.2 mm/yr and increased to 3.2±0.4 mm/yr between 1993 and 2010, and projected that in 2100 the largest increase in global average sea level will reach 0.82m [32]. Furthermore, global sea level variations have non-uniform patterns, particularly some coastal sea level changes with several times larger than the global mean sea level change, such as the coastal mid-Atlantic region, the sea level rise (SLR) rate and the SLR acceleration are significantly higher than the global mean rate [32, 11]. Therefore, sea-level rise on coastal areas has a serious threat to people and living conditions near the ocean coast. For example, the lower land could be submerged completely later with sea level rise. Rising sea level will also cause the coastal ecosystems destruction, increased coastal erosion, higher storm-surge flooding and more extensive coastal inundation. Moreover, the most economically developed regions are mostly concentrated in coastal areas. So it is important to monitor the sea level changes along global coasts, which is directly related to our living environments and marine ecosystems, particularly in European coasts areas and islands with denser population [12].
منابع مشابه
Assessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates
Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative s...
متن کاملMonitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges
We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of imp...
متن کاملA Comparative Study of Sea Level Reconstruction Techniques Using 20 Years of Satellite Altimetry Data
Sea level reconstructions extend spatially dense data sets, such as those from satellite altimetry, by decomposing the data set into basis functions and fitting those functions to in situ tide gauge measurements with a longer temporal record. We compare and evaluate two methods for reconstructing sea level through an idealized study. The compared sea level reconstruction methods differ in the t...
متن کاملCoastal sea level projections with improved accounting for vertical land motion
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) meas...
متن کاملAbsolute and Relative Calibration of Ers-2 with Applications to Envisat
Continuous monitoring of the range stability is a pre-requisite for sea-level rise and other demanding applications in satellite altimetry. Range stability may be investigated by either absolute or relative calibration techniques. In this study relative calibration is undertaken through intercomparison against TOPEX/Poseidon and absolute calibration undertaken in the vicinity of 8 tide gauges a...
متن کامل